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The Fokker�Planck (FP) equation describing the dynamics of a single Brow-
nian particle near a fixed external surface is derived using the multiple-time-
scales perturbation method, previously used by Cukier and Deutch and
Nienhuis in the absence of any external surfaces, and Piasecki et al. for two
Brownian spheres in a hard fluid. The FP equation includes an explicit expres-
sion for the (time-independent) particle friction tensor in terms of the force
autocorrelation function and equilibrium average force on the particle by the
surrounding fluid and in the presence of a fixed external surface, such as an
adsorbate. The scaling and perturbation analysis given here also shows that the
force autocorrelation function must decay rapidly on the zeroth-order time scale
{0 , which physically requires NKn<<1, where NKn is the Knudsen number
(ratio of the length scale for fluid intermolecular interactions to the Brownian
particle length scale). This restricts the theory given here to liquid systems where
NKn<<1. For a specified particle configuration with respect to the external
surface, equilibrium canonical molecular dynamics (MD) calculations are con-
ducted, as shown here, in order to obtain numerical values of the friction tensor
from the force autocorrelation expression. Molecular dynamics computations of
the friction tensor for a single spherical particle in the absence of a fixed external
surface are shown to recover Stokes' law for various types of fluid molecule�par-
ticle interaction potentials. Analytical studies of the static force correlation func-
tion also demonstrate the remarkable principle of force-time parity whereby the
particle friction coefficient is nearly independent of the fluid molecule�particle
interaction potential. Molecular dynamics computations of the friction tensor
for a single spherical particle near a fixed external spherical surface (adsorbate)
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demonstrate a breakdown in continuum hydrodynamic results at close particle�
surface separation distances on the order of several molecular diameters.

KEY WORDS: Brownian particle; Fokker�Planck equation; adsorption;
molecular friction; force autocorrelation function; molecular dynamics.

1. INTRODUCTION

The behavior of small, Brownian particles near surfaces represents an
important practical problem for a variety of processes involving adsorption
and separation of small macromolecules, such as proteins. Despite this
importance, no general scheme for including all aspects of the problem,
such as complex physical shapes of particles and surfaces and the differ-
ences in the ``chemistry'' or specific molecular interactions, currently exists.
Most studies are based on continuum approximations to the effective
hydrodynamics with idealized shapes of surfaces and particles, such as
spheres, cylinders, etc. The fact that the ``chemistry'' of the interactions can
be important is evident from recent studies of protein dynamics with
observed violations in the Stokes�Einstein relation.(1, 2) In these studies,
deviations in the intrinsic transport properties of the solvent due to the
presence of particles were observed. Clearly, it would be desirable to have
a systematic method of determining the dynamics of small particles near
surfaces that is ``built'' from the molecular scale and that would intrinsically
include all surface-solvent-solute interactions. Unfortunately, it is not com-
putationally conceivable to utilize purely molecular dynamics methods,
with time steps on the order of 10&14 seconds, since the time scales of inter-
est in adsorption and separation of small particles or macromolecules are
on the order of seconds.

In a previous study, (3) a molecular dynamics method was used to
study the behavior of the many-bodied friction tensor for particles immersed
in a rarefied, ``free-molecule'' gas. In that study, it was noted that the
molecular dynamics method could be used to study the long-time behavior
of Brownian particles by a two-step procedure. In the first step, for a given
particle configuration, the many-body friction tensor is determined from
molecular dynamics (MD) through the analysis of the force autocorrela-
tion function. In this step, the particle coordinates are kept fixed according
to the fluctuation-dissipation type relation that gives the (time-indepen-
dent) friction tensor in terms of the force autocorrelation function. In the
second step, the Fokker�Planck (FP) equation for the Brownian particle is
solved for discrete times assuming that the friction tensor remains constant
over the time step [Brownian Dynamics (BD) method]. The particles are
advanced to new positions according to the integrated FP equation and the
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entire process, MD followed by BD is repeated. Thus, MD is only per-
formed at the beginning of each BD time step. As will be shown here, for
the method to be successful, the force autocorrelation function must decay
rapidly (on the order of picoseconds).

In this study, beginning with the Liouville equation, we derive the
generalized Fokker�Planck (FP) equation for a Brownian particle near a
wall using the method of multiple time scales. It is shown that new terms
arise in the FP equation due to the presence of a wall. The relation between
the friction tensor for the particle and the force autocorrelation function is
also obtained. This relationship is shown to reduce to well-known results
in the absence of a wall. In Section 3, specific molecular dynamics simula-
tions are given for the force autocorrelation function. Comparisons to
analytical results for idealized geometries are also given. We note that the
problem of a single Brownian particle near a fixed surface is fundamentally
similar to the problem of two, interacting Brownian particles where one
particle is held fixed.

2. GENERALIZED FOKKER�PLANCK EQUATION FOR
BROWNIAN PARTICLE TRANSPORT NEAR A WALL

We begin with Liouville equation for the entire system, N fluid
molecules plus particle,

�f
�t

=&(Lf+Lp) f (1)

where f (rN, pN, R, P, t) is the probability of finding N fluid molecules at
(rN, pN) and a particle at (R, P), both at time t. Lf and Lp are the Liouville
operators for the fluid molecules and particle, respectively,

Lf= :
N

i=1
{pi

m
}

�
�ri

&
�

�ri
[ufp(ri&R)+ufw(ri&Rw)+ :

N

j=1, j<i

uff (ri&rj)] }
�

�pi=
(2)

Lp=
P
M

}
�

�R
&

�
�R _ :

N

i=1

ufp(ri&R)+upw(R&Rw)& }
�

�P
(3)

where ufp , ufw , uff , and upw are the interaction potentials between molecule-
particle, molecule-wall, molecule-molecule, and particle-wall; also, m is the
mass of a single molecule and M is the mass of the particle. Note that to
succinctly illustrate wall effects, we are neglecting the rotational degrees of
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freedom for the particle; rotational motions will be considered in a subse-
quent paper. Next, the following dimensionless ``scaled'' variables are intro-
duced

f *=
f

f0

(4)

pi*=
p i

(mkT )1�2 (5)

ri*=
ri

r0

(6)

P*=
P

(M kT )1�2 (7)

R*=
R
R0

(8)

u*lk=
ulk

kT
; lk= fp, fw, ff, pw (9)

and

t*=
t
t0

=
t(kT�m)1�2

R0

(10)

Note that t0[=R0 �(kT�m)1�2] is a characteristic fluid molecule-Brownian
particle interaction time.

Substituting the dimensionless variables into Eq. (1) gives

�f *
�t*

=&(N &1
Kn Lf*+#Lp*) f * (11)

where N &1
Kn #R0 �r0 is a type of Knudsen number, R0 is a characteristic

Brownian particle length scale, r0 is a characteristic length scale for fluid
intermolecular interaction forces,

Lf*= :
N

i=1
{p*i }

�
�ri*

&
�

�ri*
[u*fp+u*fw+u*ff] }

�
�pi*= (12)

Lp*=P* }
�

�R*
&

�
�R* _\ :

N

i=1

u*fp ++u*pw& }
�

�P*
(13)
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and #=(m�M )1�2 is the square root of the mass of a molecule over that of
the particle. The so-called Brownian particle behavior is obtained by con-
sidering the asymptotic behavior of Eq. (11) under the conditions #<<1.
For ease of notation, we will henceforth drop the asterisk notation; all
quantities will be implicitly dimensionless unless otherwise indicated.

The Brownian particle probability distribution function is defined
according to

9(R, P, t)=|
all rN, pN

f (rN, pN, R, P, t) drN dpN (14)

In a general fashion, we can integrate Eq. (11) over the phase-space of
the fluid molecules to obtain

�9
�t

=# _&P }
�9
�R

+
�upw

�R
}
�9
�P

+Lf & (15)

where

Lf #| { �
�R _ :

N

i=1

ufp(ri&R)& }
�f
�P= drN dpN (16)

Equation (15) is a formal albeit unresolved result; to proceed further, we
must resolve Eq. (16). Here we follow the multiple time scales method pre-
viously used by Cukier and Deutch(4) and Nienhuis(5) in the absence of
wall effects. It will be shown here that wall effects alter the particle
dynamics in many different ways. The results given are also consistent with
those obtained by Piasecki et al.(6) for two Brownian particles in a hard
fluid.

For #<<1, we consider the following multiple time scale expansions to
the probability distribution functions

f =f (rN, pN, R, P, {0 , {1 , {2 ,...)

= f (0)(rN, pN, R, P, {0 , {1 , {2 ,...)+#f (1)+#2f (2)+ } } } (17)

and

9=9(R, P, {0 , {1 , {2 ,...)

=9 (0)(R, P, {0 , {1 , {2 ,...)+#9 (1)+#29 (2)+ } } } (18)

where {n=#nt are the various time scales: {0 reflects the dynamics for small
times, {1 for somewhat larger times, etc. In the multiple time scales method,
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the introduction of new independent time variables allows us to introduce
``new conditions'' on the solution behavior that need not have any physical
basis.(7) Substituting Eq. (17) and Eq. (18) into Eq (11) and Eq. (15), with
���t=���{0+#(���{1)+#2(���{2)+ } } } , gives the following set of problems

�f (0)

�{0

=&N &1
Kn Lf f (0) (19)

�f (1)

�{0

+
�f (0)

�{1

=&[N &1
Kn Lf f (1)&Lp f (0)] (20)

�f (2)

�{0

+
�f (1)

�{1

+
�f (0)

�{2

=&[N &1
Kn Lf f (2)&Lp f (1)] (21)

etc. and

�9 (0)

�{0

=0 (22)

�9 (1)

�{0

+
�9 (0)

�{1

=_&P }
�9 (0)

�R
+

�upw

�R
}
�9 (0)

�P
+Lf (0)& (23)

�9 (2)

�{0

+
�9 (1)

�{1

+
�9 (0)

�{2

=_&P }
�9 (1)

�R
+

�upw

�R
}
�9 (1)

�P
+Lf (1)& (24)

etc.
As given previously by Cukier and Deutch, (4) the solutions to

Eqs. (22) and (19) are, respectively

9 (0)=9 (0)(Q, {1 , {2 ,...), or 9 (0){9 (0)({0) (25)

and

f (0)(q, Q, {0 , {1 ,...)=e&NKn
&1Lf {0 f (0)(q, Q, 0, {1 ,...) (26)

where Q#(R, P) and q#(rN, pN).
Now, we introduce the following fluid molecule conditional distribu-

tion function

h(q, t; Q, t)=
f (q, Q, t)
9(Q, t)

(27)
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The actual initial state for f can then be written in terms of the multiple
time scales as

f (q, 0, 0,...)=h(q, 0, 0,...; Q, 0, 0,...) 9(Q, 0, 0,...) (28)

For example, a common initial state in Brownian dynamics simulations is
for the position and momentum of the particle to be known at time t=0,
i.e.,

9(Q, 0, 0, 0)=$(Q&Q0) (29)

and for the fluid molecules to have established an equilibrium state in the
potential field of the particle and, in our case, the wall, i.e.,

h(q, 0, 0,...; Q, 0, 0, 0)=heq (30)

where heq follows from the solution to

Lf heq=0 (31)

Looking at Eq. (11), it is clear that this ``rapid relaxation'' of the fluid
depends on the Knudsen number for any particular system with # small.
Here, we will assume that the Knudsen number is always small enough
such that the ``rapid relaxation'' assumption is valid. More discussion on
the effects of initial conditions will be given later [also, see reference 8],
however, we note that the general behavior of h(0)# f (0)�9 (0) on the {0

time scale is given by Eqs. (25) and (26) as

�h(0)

�{0

=&N &1
Kn Lf h(0) (32)

or

h(0)=e&NKn
&1Lf {0h (0)(q, 0, {1 ,...; Q, 0, {1 ,...) (33)

Now, analogizing the remarks of Piasecki(6) in the case of the Lorentz
electron gas, it is convenient but not necessary to choose the initial state
of f (0)(q, Q, 0, {1 , {2 ,...) to be given, in part, by the actual initial equi-
librium state for the fluid [from Eq. (30)], i.e.,

f (0)(q, Q, 0, {1 , {2 ,...)=h(0)(q, 0, {1 ,...; Q, 0, {1 ,...) 9 (0)(Q, 0, {1 , {2 ,...)

=heq9 (0)(Q, {1 , {2 ,...) (34)
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We also choose

f (n)(q, Q, 0, {1 , {2 ,...)=0, n�1 (35)

and

9 (n)(Q, 0, {1 , {2 ,...)=0, n�1 (36)

Now with the initial state given by Eq. (34), it follows from Eq. (26) that

f (0)(q, Q, {0 , {1 ,...)= f (0)(q, Q, {1 ,...)=heq 9 (0)(Q, {1 , {2 ,...) (37)

Also,

Lf (0)=
�9 (0)

�P
} | heq

�
�R

:
N

i=1

ufp(ri&R) drN dpN (38)

where heq is assumed not to depend on the given particle momentum at
time t=0. (See Eqs. (47)�(49) below.)

Introducing an equilibrium average force exerted on the particle by the
fluid

(Ff) eq=&| heq
�

�R
:
N

i=1

ufp(ri&R) drN dpN (39)

we obtain

Lf (0)=&
�9 (0)

�P
} (Ff) eq (40)

Now, in the absence of wall effects, it is justifiable to assume that the equi-
librium average force on the particle is zero. However, a careful analysis
shows that heq depends not only on the potential between the fluid and par-
ticle, but also depends on the potential between the fluid and wall [see Lf

expression, Eq. (12)]. Therefore, in general, (Ff) eq{0 in the presence of
a wall.

Having determined Lf (0), we can solve Eq. (23), with the initial state
Eq. (36), as

9 (1)(Q, {0 , {1 ,...)={0 _&P }
�9 (0)

�R
+

�upw

�R
}
�9 (0)

�P
&(Ff) eq }

�9 (0)

�P
&

�9 (0)

�{1 &
(41)
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From this equation it is seen that 9 (1) grows unbounded with {0 (secular
behavior) unless

�9 (0)

�{1

={&P }
�9 (0)

�R
&_(Ff) eq&

�upw

�R & }
�9 (0)

�P = (42)

The above equation describes the leading-order behavior of 9 (0) on the {1

time scale. Note that we also have upon eliminating secular behavior

9 (1)(Q, {0 , {1 ,...)=0 (43)

In order to proceed further, we must determine the behavior of f (1)

according to Eq. (20). In a general way, Eq. (20) can be integrated to give

f (1)=&|
{0

0
e&NKn

&1Lf s _�f (0)

�{1

+Lp f (0)& ds (44)

where f (1)(q, Q, 0, {1 ,...)=0. Using f (0)=heq 9 (0) along with Eqs. (13) and
(42) yields

f (1)=&|
{0

0
e&NKn

&1Lf s {9 (0) _P }
�heq

�R
+\Ff &

�upw

�R + }
�heq

�P &
+

�9 (0)

�P
} heq(Ff &(Ff) eq)= ds (45)

where

Ff#&
�

�R _ :
N

i=1

ufp(ri&R)& (46)

Now we must specify the general functional form of heq . For global
equilibrium, heq follows from the separable solution to Lf heq=0, i.e.,

heq=
exp[&Hf]

�� exp[&Hf] drN dpN (47)

where Hf is the dimensionless Hamiltonian for the fluid molecules in the
presence of the particle and the wall,

Hf= :
N

i=1 _p2
i + :

j, j<i

uff (ri&rj)+ufp(ri&R)+ufw(ri&Rw)& (48)
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Thus,

�heq

�P
=0, global equilibrium (49)

and

�heq

�R
=heq(Ff &(Ff) eq), global equilibrium (50)

Other solutions to h(0) have also been conjectured based on local equi-
librium conditions.(9) As pointed out by Mazo, (9) however, neither local
equilibrium or global equilibrium addresses the effects of the initial state as
discussed previously. Our interest here is on the effects of a wall and we
will assume global equilibrium on the {0 time scale to hold. Specific
molecular dynamics results will also be given below in order to examine
this assumed behavior.

Thus, we have from Eqs. (45), (49), and (50) that

f (1)=&\9 (0)P+
�

�P
9 (0)+ } |

{0

0
heqe&NKn

&1 Lf s(Ff &(Ff) eq) ds (51)

Now, integrating Eq. (24), with 9 (1)=0 and 9 (2)(Q, 0, {1 ,...)=0,

9 (2)(Q, {0 , {1 ,...)=&{0

�9 (0)

�{2

+|
{0

0
Lf (1)(q, Q, x, {1 ,...) dx (52)

The integral term is given explicitly by

|
{0

0
Lf (1)(q, Q, x, {1 ,...) dx

=|
{0

0 {|rN, pN
Ff }

�
�P \9 (0)P+

�9 (0)

�P +
} _|

x

0
heqe&NKn

&1Lf s(Ff &(Ff) eq) ds& drN dpN= dx

=
�

�P
} |

{0

0 {|rN, pN
heq Ff _|

x

0
e&NKn

&1Lf s(Ff &(Ff) eq) ds& drN dpN= dx

} \9 (0)P+
�9 (0)

�P + (53)
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Noting that Ff and Lf do not depend explicitly on time, we can rewrite the
above equation as

|
{0

0
Lf (1)(q, Q, x, {1 ,...) dx

=
�

�P
} |

{0

0
|

x

0
(Ff [e&NKn

&1Lf s(Ff &(Ff) eq)]) eq ds dx } \9 (0)P+
�9 (0)

�P +
(54)

Interchanging the order of the time integrations gives

|
{0

0
Lf (1)(q, Q, x, {1 ,...) dx

=
�

�P
} {0 |

{0

0 \1&
s

{0 + (Ff (0)[Ff (&s)&(Ff) eq]) eq ds

} \9 (0)P+
�9 (0)

�P + (55)

where we have introduced

Ff (&s)#e&NKn
&1Lf sFf (56)

which represents the value of Ff at some point in time, &s, beginning with
an initial value of Ff (0) (see Appendix).

Note, importantly, that the particle coordinates, Q, are to be kept fixed
in evaluating the time integral in Eq. (55) according to the operator Lf .

Returning to Eq. (52), in order to remove secular behavior we must
have

�9 (0)

�{2

= lim
{0 � �

�
�P

} |
{0

0 \1&
s

{0+ (Ff (0)[Ff (&s)&(Ff) eq]) eq ds

} \9 (0)P+
�9 (0)

�P + (57)

and also then

9 (2)=0 (58)

We note that, as given by Eq. (A2), Ff (&s) is subject to the same
dynamical conditions as h(0) from Eq. (32), i.e., the rapid relaxation
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assumption with NKn<<1. Thus, with this consistently applied assumption
the correlation function (Ff (0) Ff (&s)> eq must decay rapidly to (Ff) 2

eq

on the {0 time scale. Importantly, if the rapid relaxation assumption does
not hold for Ff (&s), then it does not hold for h(0) either. Further analysis
and verification will be made when molecular dynamics results are presen-
ted; we also refer the interested reader to reference(8) for more discussion.2

Returning to Eq. (57), we can write

�9 (0)

�{2

=
�

�P
} ` } \9 (0)P+

�9 (0)

�P + (59)

where the time-independent friction tensor, {, is given by3

`#|
�

0
[(Ff (0) Ff (&s)) eq&(Ff) 2

eq] ds (60)

In the absence of wall effects, we have the well-known results

`=|
�

0
(Ff (0) Ff (&s)) eq ds (61)

Note that because of the time reversal behavior of the ``microscopic'' equa-
tions, the force correlation functions are symmetric in time, i.e.,

(Ff (0) Ff (&s)) =(Ff (0) Ff (s)) (62)

Summarizing, up to the {2 time scale, we have

�9
�t

=
�9 (0)

�{0

+#
�9 (0)

�{1

+#2 �9 (0)

�{2

+0(#3)

=# {&P }
�9(0)

�R
&_(Ff) eq&

�upw

�R & }
�9 (0)

�P =
+#2 _ �

�P
} ` } \9 (0)P+

�9 (0)

�P +& (63)
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or, since 9=9 (0)+#9 (1)+#29 (2)+ } } } , and 9 (1)=9 (2)=0, we finally
obtain the Fokker�Planck (FP) equation for a particle near a wall as

�9
�t

+#P }
�9
�R

+# _(Ff) eq&
�upw

�R & }
�9
�P

=#2 _ �
�P

} ` } \9P+
�9
�P +&+0(#3) (64)

where the friction tensor is given by Eq. (60). Note that both # and NKn are
considered small. In terms of dimensional variables, the FP equation reads

�9
�t

+
P
M

}
�9
�R

+_(Ff) eq&
�upw

�R & }
�9
�P

=kT { �
�P

} ` } _9
P

MkT
+

�9
�P &=

(65)

where

`#
1

kT |
�

0
[(Ff (s) Ff (0)) eq&(Ff) 2

eq] ds (66)

In what follows, we do not attempt to develop analytical expressions
for Eq. (66) based on, for example, continuum hydrodynamic theories [see,
e.g., ref. 10]. Numerically, the FP equation can be solved discretely for
small time steps [the Brownian dynamics (BD) method], where the par-
ticle force parameters (Ff) eq , �upw��R, and ` are assumed constant over
each time step.(11) At the beginning of each BD time step, equilibrium
molecular dynamics simulations can be conducted in order to determine
(Ff) eq , and `. In doing this, we avoid the restrictive assumptions of an
analytical theory as discussed in the Introduction section of this paper.
Also, note that since we have assumed global equilibrium, the molecular
dynamics (MD) algorithm is a well-known canonical equilibrium algorithm,
[cf. Eq. (47)] and therefore straightforward to apply. The MD algorithm
is only applied at the beginning of each BD time step, and thus long-time
dynamics of particles can be probed that are not currently possible by MD
algorithms alone.

3. MOLECULAR DYNAMICS SIMULATIONS AND THE FORCE
AUTOCORRELATION FUNCTION

As noted above, the force autocorrelation function (FAF) can be
obtained by conducting standard canonical, equilibrium molecular
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Codes: 2088 Signs: 1534 . Length: 44 pic 2 pts, 186 mm

dynamics simulations. Note again that the particle phase space coordinates
are to be held fixed, according to Eq. (56), in the FAF analysis. Also, the
FAF must decay rapidly over the {0 time scale, which requires NKn<<1.
This restricts the theory to the liquid regime for the fluid. No attempt is
made here to review all aspects of equilibrium molecular dynamics as these
are well described in many texts [see, e.g., refs. 12�14]. Briefly, all results
reported here were based on the use of the Verlett algorithm and velocity
rescaling methods to maintain isothermal conditions.(12) In order to test the
method, simple systems consisting of (A) a single spherical particle with no
external surface present and (B) a single particle near an external spherical
surface were analyzed and compared to known analytical results as dis-
cussed below. The only MD simulation anomaly pertains to the use of
minimum image conventioning in that the MD cell containing the particle
must be large enough to avoid ``image'' particle effects. Cell size specifica-
tions are listed for all simulation results below.

A. Single Spherical Particle Results

A typical molecular dynamics simulation for a single spherical particle
in a molecular fluid is graphically illustrated in Fig. 1. Two types of
molecule-particle force interactions were investigated. In the first type, a
simple Lennard�Jones interaction potential was used as given by

u(r)=4=$ _\_$
r +

12

&\_$
r +

6

& (67)

Fig. 1. Illustration of the molecular dynamics simulation in single sphere systems.
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where =$=(=s=m)1�2, _$=(_+d )�2, =s is a L�J potential constant for the
spherical particle (treated as a larger molecule), =m is a L�J potential con-
stant for the fluid molecule, _ is the molecule diameter, d is the particle
diameter, and r is the separation distance between the molecule and the
particle center. A typical potential and force predicted from Eq. (67) is
shown in Fig. 2.

In the second type, the spherical particle was considered to be com-
posed of a large number of molecules each interacting with the fluid
molecules according to a Lennard�Jones potential. The potential energy of
interaction between a single fluid molecule and the molecular aggregate
sphere can be obtained by integrating (summing) over the entire volume of
the sphere. It can readily be shown that this results in the following expres-
sion for the potential

u(r)=q
=?_6

3r {_6

30 _
(r+9rs)
(r+rs)

9&
(r&9rs)
(r&rs)

9&&_(r+3rs)
(r+rs)

3&
(r&3rs)
(r&rs)

3&= (68)

where q is the number of molecules per unit volume of the sphere, = is a
L�J interaction potential constant for a fluid molecule�particle molecule
interaction (assumed equal), rs is the particle radius, and r is the separation
distance between the molecule and center of mass of the particle.

A typical potential and force determined from Eq. (68) is shown in
Fig. 3. For either type of potential, an effective particle radius is selected by
the usual prescription of the location in the zero of the potential (see

Fig. 2. Illustration of the interaction potential and force for a simple Lennard�Jones inter-
action between a fluid molecule and a spherical particle treated as a larger molecule.
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Fig. 3. Illustration of the interaction potential and force for the ``integrated'' or summed
Lennard�Jones interaction between a fluid molecule and a spherical particle composed of
molecules in an FCC arrangement.

Table 1. MD Simulation Parameters for Simple LJ Interactiona

Control box N=\*(l 3& 1
6 ?d 3

eff ),
Particle diameter�_ Effective diameter�_ length, l�_ number of fluid molecules

2.5 3.5 10 708
3.75 4.75 10 684
5.0 6.0 10 643
6.25 7.25 12 1108

a Fluid parameters: T*=T�(=�k)=1.0017, \*=0.725. Time step: 2t=0.5_10&14 sec. Total
time steps: 60,000�80,000.

Table 2. MD Simulation Parameters for Integrated LJ Interactiona

Control box N=\*(l 3& 1
6 ?d 3

eff ),
Particle diameter�_ Effective diameter�_ length, l�_ number of fluid molecules

2.5 3.99 10 700
3.75 5.23 10 670
5.0 6.46 11 863
6.25 7.72 12 1078

a Fluid parameters: T*=T�(=�k)=1.0017, \*=0.725. Time step: 2t=1.0_10&15 sec. Total
time steps: 60,000�80,000.
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Tables 1 and 2). For the fluid-fluid interactions, a simple Lennard�Jones
potential was also used.

For the purposes of simulation, values for Argon were used to select
all potential parameters (=�k=119.8K, _=3.405A, and m=6.63382
_10&26kg). Thus, we investigated solid Argon spheres in an Argon fluid
assuming no condensation or evaporation along the phase boundary. Solid
Argon is known to assume an fcc structure with q=- 2�r3

min , where rmin=
1.12246_.(15)

Figure 4 shows a typical particle force autocorrelation function
obtained with the fluid in the liquid regime for a simple Lennard�Jones
interaction [Eq. (67)]. The specific simulation parameters are given in
Table 1. Figure 5 shows a typical force autocorrelation function obtained
for the integrated L�J potential. The specific simulation parameters are
given in Table 2 for this case. Note that the force correlation values shown
in Figs. 5 and 6 are based on averaging over fifteen to twenty separate
intervals. Standard deviations from the fifteen to twenty samples are also
shown in Figs. 5 and 6. Standard deviations can be reduced by increasing
the total simulation time, but this generally requires larger systems to avoid
periodicity effects.(14)

In Figs. 6 and 7, the diagonal friction tensor components are shown
for the two potential types as determined from Eq. (65), using the average
force correlation values from Figs. 5 and 6, along with the prediction of

Fig. 4. Typical force autocorrelation function for the simple LJ interaction. Note that the
ford and time shown are dimensionless using the characteristic force as 48=�_ and the charac-
teristic time as [m_2�(48=)]1�2.
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Fig. 5. Typical force autocorrelation function for the integrated LJ potential. Note that the
force and time shown are dimensionless using the characteristic force as 48=�_ and the charac-
teristic time as [m_2�(48=)]1�2.

Fig. 6. Diagonal components of the friction tensor (ii=xx, yy, or zz) computed from the
force autocorrelation function for the simple LJ interaction. Also shown is Stokes' law predic-
tion using an effective particle radius (see Table 1). The friction tensor shown is dimensionless
using the characteristic value of [_2�(48=)]1�2.
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Fig. 7. Diagonal components of the friction tensor computed from the force autocorrelation
function for the integrated LJ interaction. Also shown is Stokes' law prediction using an effec-
tive particle radius (see Table 2). The friction tensor shown is dimensionless using the charac-
teristic value of [_2�(48=)]1�2.

Stokes' law using the effective sphere radius and tabulated (physical)
experimental values for the viscosity of argon (CRC Handbook of
Chemistry and Physics, 77th edition) (`Stokes=6?+reff). As can be seen very
good agreement is obtained. Note that for the smallest diameter systems
shown, no attempt was made to use generalized hydrodynamics(16) for
comparison purposes due to the scatter present.

We also examined the effects of the thermostat on the friction tensor
calculations. As discussed above, a velocity rescaling method was used in
order to maintain isothermal conditions; the molecular velocities are
rescaled every time step. One way to examine the sensitivity of the results
on the thermostat conditions can be accomplished by varying the time
interval for rescaling of the velocities. Figure 8 shows the friction tensor as
a function of the velocity rescaling time interval. As can be seen, rescaling
the velocity every one to five steps has no measurable effect on the results.
This is due to the extremely small change in the total molecular kinetic
energy over these time steps (<10). As shown in Fig. 8, we must go as
large as rescaling every ten time steps in order to observe spurious
behavior of the friction tensor calculations. In these extreme cases, the total
kinetic energy changes are large enough to significantly perturb the
molecular velocities during rescaling. We conclude that the force
autocorrelation calculations are somewhat insensitive to the manner of
maintaining the thermostat.
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Fig. 8. Diagonal components of the friction tensor (ii=xx, yy, or zz) as a function of the
number of time steps between velocity resealing for the integrated LJ interaction. The particle
diameter is 5_.

Interestingly, it is to be noted that the ILJ potential results in larger
values of the static force correlation (F(0) F(0)) and more rapid decay
than the simple LJ. Thus, the integral of the force correlation over time,
which is proportional to the friction tensor, becomes nearly independent of
the type of potential provided that the effective sphere diameters are
employed. This result is in agreement with previous studies in single sphere
systems.(16)

Further analysis of the static force correlation can also be shown to be
useful. Following Boon and Yip,(17) the static force correlation can be
separated into binary and three-body interactions as

(F(0) F(0))eq=� :
N

i=1

FoiFoi�eq
+� :

N

i=1

:
N

j=1
j{i

FoiFoj� eq

=F2
2(0)+F2

3(0) (69)

where Foi is the force exerted on spherical particle by molecule i at time
t=0. Again, following Boon and Yip,(17) it can be shown that the two-
body, F2

2(0), and three-body, F2
3(0), terms can be expressed in terms of

the single molecule-particle radial distribution function and its gradient
as
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F 2
2ii

(0)=
4?n

3 | r2g(r) _du(r)
dr &

2

dr (70)

F 2
3ii

(0)=
4
3

?n(kT )2 | r2 {&
1

kT
du(r)

dr
dg(r)

dr
&

1
(kT )2 g(r) _du(r)

dr &
2

= dr (71)

ii=xx, yy, or zz in Cartesian coordinates with all off diagonal terms being
zero. Combining Eqs. (70) and (71) we obtain

(F 2
ii (0)) eq=&

4
3

?nkT | r2 _du(r)
dr

dg(r)
dr & dr (72)

Note that Eq. (70) is dominant in rarefied gases with F 2
3ii (0)=0, i.e.,

no three-body interactions (fluid molecule�fluid molecule�partible). For
``hard'' interactions in a rarefied gas system, following Boon and Yip, (17) an
estimate of the static force correlation is

F 2
2ii (0)= 4

3?n;&2_e y(_e) 4e (73)

where n is the number density of the liquid, ;=(1�kT ), _e is the effective
sphere diameter, y(r) is the Mayer function,

y(r)#g(r) exp[;u(r)] (74)

and 4e is a hardness index. For a rarefied gas y(_e)=1 and for the simple
L�J interaction 4e=12. The decay time can be estimated as (17)

td=
_e

4evo
(75)

where vo is a characteristic velocity of the molecule-particle encounter.
Using the mean molecular speed [vo=(8kT�?m)1�2], and assuming a sim-
ple linear decay, leads to an estimate of the friction tensor for a highly
dilute gas (no fluid molecular interactions) as

`=4.188n(2?mkT )1�2 r2
eff (76)

which compares well with Epstein's classical formula for a spherical particle
with specular reflection boundary conditions(18)

`= 8
3n(2?mkT )1�2 r2

eff (77)

In the more general case, in order to estimate the two- and three-body
contributions to the static force correlation, the radial distribution function
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Fig. 9. Typical radial distribution function for the simple LJ interaction potential.

and its gradient are needed. This can be obtained experimentally, from
molecular dynamics or from, e.g., the hypernetted chain equation.(19)

Figures 9 and 10 show typical radial distribution functions obtained from
molecular dynamics for the simple L�J system and the integrated L�J
system, respectively. Note that a much larger first coordination shell den-
sity is exhibited for the integrated L�J system due to its deeper potential

Fig. 10. Typical radial distribution function for the integrated LJ interaction potential.
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Table 3. Comparison of the Static Force Correlation Function Calculated
from Theory [Eq. (76)] and Directly from Experiments (Molecular Dynamics)a

Potential type Diameter�_ deff �_ (F 2
i (0)) theory (F 2

i (0)) exp

LJ 1.0 2.0 0.092 0.105
LJ 5.0 6.0 0.160 0.167
ILJ 6.25 7.72 1.169 1.122

a For other simulation parameters, please refer to Tables 1 and 2.

minimum. In Table 3, calculations of the static force correlation from
Eq. (72) show excellent agreement with the static force values obtained
directly from simulation in the liquid regime for both potential types.

B. Single Spherical Particle near an External Spherical
Surface (Adsorbate)

Because of the availability of analytical results for the hydrodynamic
interactions of two spheres, a number of simulations were carried out for
this type of system. The Cartesian components of the friction tensor for a
single spherical Brownian particle near a fixed external sphere (adsorbate
or ``collector'') is given to O� (1�R6) by ref. 11.

`zz=6?+rs _1+
9
4

rsb
R2 &

3rs b(r2
s +b2)

2R4 +
15
4

rsb3

R4 +
81
16

r2
s b2

R4 & (78)

`xx=`yy=6?+rs _1+
9

16
rsb
R2 +

9
4

rsb(r2
s +b2)

R4 +
81

256
r2

s b2

R4 ] (79)

where the z-axis is along line of centers of the particle and the external
sphere, rs is the particle radius, b is the external sphere radius, and R is the
separation distance. All off-diagonal elements of the friction tensor are zero
for this case.(11) Higher-order approximations to Eqs. (78) and (79) are
also available, (11, 20) however, as will be shown, these are not needed for
comparison purposes.

Figure 11 shows a typical force autocorrelation function, minus the
equilibrium force squared [see Eq. (66)], for the particle-sphere system.
Fluid molecule interactions with the particle and external sphere were taken
to be the simple LJ type. Simulation parameters are given in Table 4, and
the friction tensor for various separation distances is given in Figs. 12 and
13. As can be seen from Fig. 12, both molecular dynamics and continuum
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Fig. 11. Typical force autocorrelation function (minus the equilibrium average force
squared) for the simple LJ interaction in the particle-sphere system at a separation distance
of 1.1d. Note that the force and time shown are dimensionless using the characteristic force
as 48=�_ and the characteristic time as [m_2�(48=)]1�2.

Fig. 12. The particle friction tensor as a function of the separation distance for the simple
LJ interaction in the particle-sphere system-component along the line of centers. The particle
and the sphere diameter are both 5_ and the friction tensor shown is dimensionless using the
characteristic value of [_2�(m48=)]&1�2.
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hydrodynamic theories predict an increase in the particle friction for sur-
face to surface separation distances greater than two to three molecular
diameters. For distances less than this, however, the agreement breaks
down due to a break-down in the continuum hypothesis. Similar results in
a two-sphere system have been obtained by Vergeles et al.(21) using a
moving sphere simulation method and Bocquet et al.(22) for two Brownian
particles.

For the transverse component of the particle friction tensor given in
Fig. 13, it can be seen that the MD evaluation of the friction tensor in the
particle-sphere system cannot distinguish effects that amount to a 20 to
300 change from the isolated particle results, for the given parameter
settings, due to the random errors present. As mentioned before the ran-
dom errors can only be reduced at the expense of larger systems and larger
simulation times. Note that a typical simulation run for the particle-sphere
system given above (100,000 time steps) took approximately 24 hr on a
SUN workstation (t30 Megaflop machine). We also note that for the
single-particle and particle-sphere systems, the control box length was
taken to be two to four times the particle diameter (Tables 2 and 4, respec-
tively). The effects of the finite size of the control volume on the particle
friction appeared minimum over this range. However, more extensive
studies in larger control volumes are necessary for a more comprehensive
experimental analysis.(22)

Fig. 13. The particle friction tensor as a function of the separation distance for the simple
LJ interaction in the particle-sphere system-components perpendicular to the line of centers.
The particle and the sphere diameter are both 5_ and the friction tensor shown is dimen-
sionless using the characteristic value of [_2�(m48=)]&1�2.
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Table 4. Single Particle near a Fixed External Sphere:
Simulation Parameters

Particle diameter�_, d�_=5.0
External sphere diameter�_, b�_=5.0
Simple LJ interaction
Effective diameters�_=6.0
Control box length, lx �_=ly �_=11.0 , lz �_=22.0
Total number of molecules in control volume=1766
T*=T�(=�k)=1.0017, \*=0.725
Time step: 2t=0.5_10&14 sec.
Total time steps=100,000

Finally, Fig. 14 shows the equilibrium average fluid force on the par-
ticle and the sphere in the particle-sphere system. As expected, the equi-
librium force on the particle and sphere is equal and opposite resulting in
a net attractive force. Note that these results are consistent with the well-
known Asakura�Oosawa potentials popularized in polymer physics.(23)

4. CONCLUSIONS

The Fokker�Planck (FP) equation for a single Brownian particle near
a surface has been derived beginning with the Liouville equation written for

Fig. 14. Molecular dynamics calculation of the equilibrium average force (exerted by the
fluid) on the particle and sphere in the particle-sphere system as a function of the Separation
distance�component along the line of centers. The particle and the sphere diameter are both
5_ and the force is dimensionless using the characteristic force as 48=�_.
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a system consisting of n-fluid molecules, a single rigid particle, and a fixed
external surface. The multiple time scales perturbation method was used,
which is based on a large mass ratio, M�m>>1, where M is the mass of the
Brownian particle and m is the mass of a fluid molecule. The FP equation
includes an explicit expression for the time-independent friction tensor
of a single Brownian particle near a surface in terms of the force autocorre-
lation function (FAF). It was shown that the FAF must decay rapidly
on the {0 time scale, which physically requires NKn<<1 where NKn is
the Knudsen number (ratio of the length scale for fluid intermolecular
interactions to the characteristic length scale for the Brownian particle).
The FAF is to be evaluated under the conditions of equilibrium of the
fluid molecules in the presence of a fixed particle and a fixed external
surface.

Specific molecular dynamics simulations were carried-out to determine
the friction tensor for systems characterized by Lennard�Jones molecular
interaction potentials. Predicted friction coefficients for a single spherical
particle in the absence of any external surface were shown to agree with
Stokes' Law for ``stick'' boundary conditions provided that effective sphere
diameters were used. These results are consistent to those previously given
by Alley and Alder(16) for hard sphere systems. Additionally, analytical
expressions for the static force correlation function were shown to agree
extremely well with molecular dynamic results. Static force correlation
analysis can also be used to obtain an approximate expression for the
friction coefficient for particles in rarefied gas flows and purely repulsive,
gas-particle interactions. The expression is shown to compare favorably to
Epstein's classical formula. More importantly, the analysis illustrates a
remarkable principle of ``force-time parity,'' i.e., the static force correlation
values are directly proportional to the ``hardness'' of the potential, whereas
the decay times of the force autocorrelation are inversely proportional to
the hardness. The net result is the friction tensor, which is the time integral
of the force autocorrelation function, is independent of the ``hardness''
index or specific potential type. Molecular dynamics results demonstrate
that force-time parity also holds in dense, liquid systems as well, explain-
ing why Stokes' law holds for such a wide range of types of particles and
fluids.

Molecular dynamic simulations were also carried-out for a single par-
ticle near a spherical external surface (adsorbate). Fluid molecule inter-
actions with the particle and the external surface were taken to be simple
LJ as discussed previously. Molecular dynamics results were then com-
pared to continuum hydrodynamic theories. In general, MD simulations
showed the increase in the hydrodynamic resistance of a single particle
near a surface for large separations qualitatively consistent with hydro-
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dynamic theories. However, MD results demonstrated a decrease in the
friction tensor as the surface-to-surface separation distance becomes
smaller, approaching a distance on the order of a couple of molecular
diameters.

Finally, we note that the analysis given here neglects the rotational
motion of the Brownian particle and treats only the translational motion.
Extensions to rotational motion, including a fixed external surface are
currently being developed.(24)

APPENDIX

To see Eq. (56), we first note that

e&NKn
&1Lf sFf=Ff&sN &1

Kn LfFf+
s2N &2

Kn

2
L2

f Ff } } } (A1)

Also, Ff depends implicitly on time through the fluid molecular phase-
space variables q, i.e., by the chain rule

dFf (t)
dt

=N &1
Kn Lf Ff (A2)

and

d 2Ff (t)
dt

=N &2
Kn L2

f Ff (A3)

etc.
Now, it can be seen that Eq. (57) is simply a Taylor series expansion

of Ff (&s) about Ff (0), i.e.,

Ff (&s)=Ff (0)&s
dFf (0)

ds
+

s2

2
d 2Ff (0)

ds2 } } } (A4)

where the time derivatives are related to the space derivatives accord-
ing to Eqs. (A2), (A3), etc., similarly, Ff e&NKn

&1Lf sFf , appearing in
Eq. (54), is a Taylor series time expansion of Ff (0) Ff (&s) about
Ff (0) Ff (0)(QED).
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